A sophisticated visualization of neural network activation functions and their performance characteristics
神经网络激活函数及其性能特性的高级可视化
Average gradient magnitude in the first hidden layer
第一个隐藏层中的平均梯度大小
This visualization demonstrates how different activation functions perform when training neural networks on various datasets. The interface allows you to:
Observe how ReLU maintains strong gradients while Sigmoid and Tanh suffer from vanishing gradients, especially in deeper networks.
此可视化展示了在不同数据集上训练神经网络时,不同激活函数的性能表现。界面允许您:
观察ReLU如何保持强梯度,而Sigmoid和Tanh如何遭受梯度消失问题,尤其是在更深的网络中。